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Abstract. We report our results about the fluctuation effects on the surface static structure factor
and on the local Bose–Einstein condensate (BEC) in the low density surface region of 4He. This
information has been obtained by a variational Monte Carlo calculation for a slab of 4He modelled
by a novel shadow wave function with a glue term (glue-SWF). This glue-SWF describes the self-
binding of 4He only via local interparticle correlations. BEC increases from the bulk-like value
well inside the slab to a much larger value in the surface region (up to about 50%). Further out of
the surface the condensate decreases and correspondingly there is an enhanced population of small
momentum states. This is very different from the full BEC that was predicted using a simplified
variational treatment of these 4He systems. This different behaviour is correlated with the presence
in the glue-SWF of enhanced density fluctuations in the surface region as shown by the behaviour
of the static structure factor at small wave vector. This is interpreted as an effect due to the zero
point motion of ripplons.

1. Introduction

The treatment of highly inhomogeneous states of a quantum fluid such as 4He has attracted
much attention and methods developed for the uniform case have been extended to treat cases
like a cluster, a film on a solid substrate or the liquid–vacuum interface. The inhomogeneity
has two different origins. In the case of a thin film like a monolayer or a bilayer on a substrate
it is the binding to the substrate, usually much stronger than the interatomic binding, which is
controlling, to a large extent, the inhomogeneity. Such inhomogeneity would be present also
in the hypothetical case of a fluid made of particles with just repulsive interatomic forces, as
in the case of hard spheres. The situation is different in the case of a cluster or of the free
surface of a fluid. Here the inhomogeneity arises because the system possesses a bound state
so that under certain circumstances the system lowers its energy by forming interfaces and not
by filling in a uniform way all the allowed space. The current theoretical treatments do not
stress such a difference and all inhomogeneities are treated essentially in the same way. Here
we show that a novel way to represent self-binding in a quantum system introduced few years
ago [1] is successful from the energetic point of view but it gives a very different and more
realistic picture compared with the standard treatment for surface fluctuations related aspects.
Recently [2] it has been suggested that the low density surface region of 4He is a physical
system that possesses full Bose–Einstein condensation (BEC). But BEC is a fragile effect that
may easily be affected by other properties of the system. For instance, from our calculations
we find that the local BEC does not reach full condensation in the low density surface region
as found with standard wave functions (wf) but actually there is first an increase of BEC in the
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surface region due to the lowering of the local density followed by a strong depression due to
surface fluctuations.

2. Self-binding with glue-SWF

Here we only consider the case of bosons at T = 0 K and 4He is the physical system we
have in mind. The standard theoretical treatment is based on the variational approach and
the inhomogeneity is induced in the system by the presence of Hartree-like terms, i.e. by
single particle factors, in the ground state wf �0. The simplest approximation for a strongly
interacting system like 4He is the Hartree–Jastrow form, in which interparticle correlations are
represented by pair terms so that �0 reads

�0(R) =
∏
i

f (1)(�ri)
∏
l<m

f (2)(rlm). (1)

R = {�r1, .., �rN } represent the coordinates of the N bosons and f (1) and f (2) are non-negative
functions which are determined by minimization of the expectation value of the Hamiltonian.
It is recognized [3] that the pair term f (2) should depend separately on �rl and �rm, but in the
actual computations one usually assumes a bulk-like form, i.e. a dependence just on the pair
distance rlm = |�rl − �rm|. A better representation of �0 is obtained if (1) is supplemented
by correlations between triplets of particles. No variational computation has been performed
yet with the more general form, in which f (2) is assumed to depend separately on �rl and
�rm, presumably due to the difficulty of modelling such dependence. A different strategy is
to include many-particle correlations in �0 via the technique of subsidiary variables, the so
called shadow wf (SWF). This technique has given superior results [4], not only for the ground
state but also for excited states, and we adopt it here by a suitable extension which is able to
represent self-binding.

Binding in a quantum system at T = 0 K is peculiar because the dense system coexists
with a vacuum, not with a vapour as in a classical system. This means that the quantum
probability density P(R) = |�0(R)|2 cannot have a classical analogue with a system with
local interparticle interactions. We noticed that the following form of �0 has the desired
properties:

�(R) =
∫

dSF(R, S) × L(S) (2)

where S = {�s1, .., �sN } are the coordinates of a set of subsidiary variables (shadows). F(R, S)

contains correlations between particles, between shadows and between particles and shadows
of the pair form

F(R, S)=φp(R) ×
N∏
i=1

fps(| �ri − �si |) × φs(S). (3)

φp(R) = ∏N
i<j=1 fp(|�ri − �rj |) is a Jastrow factor, and similarly for φs(S) = ∏N

i<j=1 fs(|�si −
�sj |). Integration over shadow coordinates implicitly introduces correlations between particles
beyond the pair (Jastrow) level at all orders. The glue factor L(S) has the form:

L(S) =
N∏
i=1

exp

[
−D

(n̂i − 1)2

n̂i

]
. (4)

n̂i represents a suitably normalized local density operator of shadow variables around the i-th
shadow:

n̂i = 1

A

∑
j ( 	=i)

l(|�si − �sj |) l(s) = e−µs2
. (5)
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The correlations introduced with the glue factor L(S) act as a ‘spring’, trying to keep n̂i

not too far from 1. When the system is homogeneous the argument of the exponential function
in L(S) can be expanded around the average value 〈n̂i〉 of the local density operator. To the
lowest order in n̂i −〈n̂i〉 one can easily see that the effect of the glue factor L(S) is simply that
of renormalizing the Jastrow factor fs for the shadow. To second order, it introduces triplet
correlations between the shadow variables. If the fluctuations around 〈n̂i〉 are small then these
effective couplings will be small too. The situation is very different should the homogeneous
state be such that 〈n̂i〉 is much below unity. This is the case in which N atoms have a large
volume V available so that N/V << ρ0, where ρ0 is the equilibrium density of the system.
In this case the glue term causes a symmetry breaking in the state of the system, i.e. the N

atoms do not fill uniformly the volume V , but only partially fill it, so that n̂i stays close to
unity. In other words we have a phase separation into a dense region and a remaining region.
Actually this remaining region has zero density. In fact, the probability that a single particle can
escape from the fluid is zero due to the presence of n̂i in the denominator in the exponential
of equation (4): a configuration in which one 4He atom is far from the rest of the system
causes n̂i to be near zero and therefore also L(S) so that the SWF vanishes. In principle we
could have evaporation of dimers or trimers, but the actual computation shows that this never
happens when the wf is optimized for 4He. In this way we are able to reproduce the self-bound
properties of 4He in the presence of a free surface. For the correlating factors contained in
F(R, S) we assume that they are the same for bulk 4He and we have used those which have
been recently fully optimized [4] in the bulk liquid. The only new variational parameters are
contained in L(S). Specifically D, µ and A are the variational parameters which have been
optimized in this calculation. D controls the force of the ‘spring’, µ characterizes the range
of the local density operator and A controls the average density of the system.

(a) (b) (c) (d)

Figure 1. Projection of the positions of the particles on the x–z plane after a dilatation for a factor
of five in the z-direction. The panels correspond to configurations after 250 (a), 7500 (b), 105 (c)
and 2 × 105 (d) Monte Carlo steps.
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In order to prove the self binding property of our wf we have performed the following
computer experiment. We start the simulation with V and N with N/V of order of ρeq or above
and in this way the particles fill the space uniformly, reproducing the bulk system. We have
verified that the energy, the correlations and also the BEC fraction are essentially unaffected
by the presence of the glue term L(S). At a certain point of the simulation, the simulation
box is expanded by a large factor. One can proceed in two ways. In the first, the positions of
the particles and shadows are unchanged when the volume V is increased. In the second, one
performs a dilatation also of the coordinates of particles and shadows when V is increased.
After relaxation we find that the final state is the same irrespective of the way the dilatation is
performed: the system is found to be in a dishomogeneous state forming either a droplet or
a spanning slab across the volume V depending on the geometry of the box after dilatation.
Let us stress that we have achieved with the glue-SWF self-binding only via local interparticle
correlations. As an example, in figure 1 we show the evolution after the dilatation has been
performed along only one of the sides of the initially cubic simulation box. At the same time
the coordinates have also been expanded. The process of coalescence is clear. In this case
since only one side of the simulation box has been expanded (the one in the z-direction) the
preferred equilibrium geometry is a slab perpendicular to the z-axis. Should one expand the
simulation box in all three directions the final state would be a cluster.

3. Ground-state results

With the glue-SWF we have studied both slabs of different thicknesses and droplets with
different number of particles. The energetics and the density profile are similar to previous
results obtained with standard variational techniques and these results compare favourably
with exact quantum Monte Carlo methods. Figures 2 and 3 show, respectively, the density
profile along the z-axis for slabs and the radial density profile for droplets calculated with the
glue-SWF for different number of 4He atoms.

0.0 20.0 40.0
z [A]

0.00

0.01

0.02

ρ(
z)

 [
A

−
3 ]

Figure 2. Density profile ρ(z) of slabs with different number of particles (N =
54, 72, 108, 216, 432) as given by the glue-SWF. The slab is symmetric with respect to z = 0.
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Figure 3. Radial density profile ρ(r) for clusters with different number of particles (N =
20, 70, 112, 240).

In tables 1 and 2 we collect some of the properties obtained in the simulation of self-
bound slabs and droplets with the glue-SWF; we compare our results with those found with
the standard variational approach or with some exact quantum Monte Carlo methods such
as the diffusion Monte Carlo (DMC) and the Green function Monte Carlo (GFMC). In our
simulation the slabs have different numbers of particles but the surface area A is kept constant
to the value A = 290.6 Å2. From an energetic point of view, the description of a self-bound
state with the glue-SWF is successful; we obtain results that are similar to the energies found
with the other techniques. A first sign of the differences that one finds in the description of
the surface properties of an 4He system with the glue-SWF can be seen in the greater surface
width W that we obtain.

Table 1. Properties of 4HeN slabs. 〈E〉/N is the total energy per particle of the slab. W is the
width of the surface (0.9ρ → 0.1ρ). D, µ and A are the variational parameters obtained in the
optimization of the glue factor in equation (4). In order to comply with the periodic boundary
conditions the function l(s) + l(L − s) − 2l(L/2) in place of l(s) has been used, where L is the
side of the simulation box parallel to the surface.

Method N 〈E〉/N [K]
√

〈z2〉[Å] W [Å] D µ [Å−2] A

SWF 54 −4.06 ± 0.03 3.47 ± 0.31 5.06 0.35 1.53 × 10−2 3.9
SWF 72 −4.67 ± 0.03 4.41 ± 0.48 5.52 0.35 1.53 × 10−2 3.8
SWF 108 −5.38 ± 0.03 5.65 ± 0.53 5.26 0.30 1.53 × 10−2 5.3
SWF 216 −6.13 ± 0.02 10.33 ± 0.94 4.75 0.35 1.53 × 10−2 5.7
SWF 432 −6.52 ± 0.02 20.06 ± 1.8 4.8 0.25 1.53 × 10−2 8.0
VMC [5] 54 −4.06 ± 0.03 3.48 3.1 – – –
VMC [5] 108 −5.31 ± 0.03 5.84 3.5 – – –
VMC [5] 216 −5.98 ± 0.03 10.28 4.3 – – –
GFMC [5] 54 −4.65 ± 0.03 3.47 3.1 – – –
GFMC [5] 108 −5.69 ± 0.03 5.86 3.7 – – –
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Table 2. Properties of 4HeN droplets. 〈E〉/N is the total energy per particle of the cluster. r0 is
defined as r0 = (5/3)1/2〈r2〉1/2N−1/3 and W is the width of the surface (0.9ρ → 0.1ρ). D, µ
and A are the variational parameters obtained in the optimization of the glue factor in equation (4).

Method N 〈E〉/N [K] r0[Å] W [Å] D µ [Å−2] A

SWF 20 −1.52 ± 0.03 2.71 5.11 0.45 1.53 × 10−2 19.9
SWF 70 −2.93 ± 0.02 2.47 7.05 0.35 1.53 × 10−2 32.0
SWF 112 −3.40 ± 0.02 2.55 8.07 0.35 1.53 × 10−2 36.6
SWF 240 −4.14 ± 0.02 2.46 7.8 0.30 1.53 × 10−2 53.0
VMC [6] 20 −1.51 2.73 5.4 – – –
VMC [6] 70 −3.0 2.42 3.5 – – –
VMC [6] 112 −3.5 – – – – –
VMC [6] 240 −4.19 2.36 4.1 – – –
DMC [7] 20 −1.66 2.68 – – – –
DMC [7] 70 −3.2 2.43 – – – –
DMC [7] 112 −3.73 2.42 – – – –
GFMC [8] 20 −1.63 – – – – –
GFMC [8] 70 −3.12 – – – – –
GFMC [8] 112 −3.6 – – – – –

0.0 5.0 10.0
x = A/N [A

2
]

−7.00

−6.00

−5.00

−4.00

E
 [

K
]

Figure 4. Energies per particle for slabs with different thickness versus x = A/N . The curve is
the second-degree polynomial fit to our results.

As shown in [5], from simulation of slabs with different thicknesses and different number
of atomsN but with a constant surface areaA, one can extract the bulk energyEbulk , the surface
energy and higher order terms. If we define x = A/N one hasE(N)/N = Ebulk+σx+δx2+. . .
where σ is the surface tension. In figure 4 we plot E as function of x for slabs with
different thicknesses (N = 54, 72, 108, 162, 216, 324, 432) and the parabola which fits
our results. From the fit we find Ebulk = −6.929 ± 0.021 K, σ = 0.31 ± 0.01 K Å−2 and
δ = −0.0040±0.0009. Ebulk as given from the fit is in agreement with energy per particle found
[4] in the simulations of the bulk liquid E/N = −6.937 ± 0.006 K. Previous Green function
and variational Monte Carlo methods [5] gave surface tensions of σ = 0.265 ± 0.006 K Å−2
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and σ = 0.272 ± 0.011 K Å−2, respectively. Recent experimental results [9] have measured a
surface tension of σ = 0.272 ± 0.002 K Å−2. Our result for σ is about 13% higher than these
values.

4. Fluctuation properties of the interface

Starting from a successful variational description of a self-bound 4He system, now we want
to investigate the fluctuation properties of the interface and their influence on the local BEC
at the free surface. The zero point motion of the low energy excitations in a quantum fluid
determines the small k behaviour of the static structure factor. For instance, the zero point
motion of phonons in bulk 4He gives the characteristic behaviour S (k) = h̄k/2mc at small
k where c is the sound velocity. In 4He with a free surface in addition to phonons, another
branch of excitations appears, the ripplons. It is known that these excitations, which are surface
modes, propagate close to the liquid–vacuum interface with energy given by the dispersion
relation

εr
(
k‖

) = h̄

√
σ

mρeq

k
3/2
‖ . (6)

�k‖ is the wave vector parallel to the surface, σ the surface tension and ρeq the density well
inside the liquid. Let us define a z-dependent structure factor

S
(
k‖, z, z′) = A−2

ρ(z)ρ(z′)

〈∑
m

ei�k‖·�rmδ
(
�rm · �̂j − z

) ∑
-

ei�k‖·�r-δ
(
�r- · �̂j − z′

)〉
(7)

where �̂j is the unit vector in the z-direction normal to the surface and A is the cross section
of the slab. S(k‖, z, z′) measures the density fluctuations of wave vector k‖ between particles,
one at height z and one at height z′. The diagonal part S(k‖, z, z) gives the static structure
factor for particles within a layer characterized by the coordinate z. It has been shown [3]
that the zero point motion of ripplon excitations at the free surface gives a contribution Sr to
S(k‖, z, z′), which at small k‖ has the following behaviour:

Sr

(
k‖, z, z′) ∼ 2

√
h̄2

mσρeq

d
√
ρ (z)

dz

d
√
ρ (z′)
dz′ k

−1/2
‖ . (8)

The k
−1/2
‖ divergence at k‖ = 0 is a manifestation of large density fluctuations due to ripplons.

Notice that these fluctuations are present only when z and z′ are in the interfacial region where
dρ(z)/dz is non-zero. As we move from the interface to the interior, the ripplon contribution
Sr goes to zero and the k

−1/2
‖ divergence crosses over to the linear behaviour in k‖ typical of

the bulk so that S(k‖, z, z) does not diverge but vanishes at k‖ = 0.
We have computed the z-dependent structure factor (7) for a slab of 4He described by a

standard wf equation (1) and by the glue-SWF. The result for a standard wf with one-body
terms and bulk-like pair terms are shown in figure 5.

In this case we do not find any enhancement of the density fluctuations in the surface
region. S(k‖, z, z) smoothly goes to 1 both at small and at large k‖. At first sight this seems
reasonable. As z moves from the interior of the slab to the surface, the density decreases
and S(k‖, z, z) evolves from a bulk-like behaviour to that of a very diluted system for which
S(k) = 1. In contrast, in the case of the glue-SWF (see figure 6) S(k‖, z, z) becomes large
at small k‖ when z is such that dρ(z)/dz is large. Notice also the persistence of a peak in
S(k‖, z, z) at large k‖ even when the local density is almost two orders of magnitude smaller
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ρ(z)=0.00033 A
−3

Figure 5. Static structure factor S(k‖, z, z) computed with a standard wf with one-body terms and
bulk-like pair terms. S(k‖, z, z) is shown for three different values of z such that the local density
assumes the values in the legend.

0.0 1.0 2.0 3.0 4.0 5.0 6.0
k [A

−1
]

0.4

0.6

0.8

1.0
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z,
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ρ(z)=0.0207  A
−3

ρ(z)=0.0099  A
−3

ρ(z)=0.00033  A
−3

Figure 6. Static structure factor S(k‖, z, z) computed with a glue-SWF. S(k‖, z, z) is shown for
three different values of z such that the local density assumes the values in the legend.

than the bulk density. This means that even in the tail of the density profile the particles are
strongly correlated. At the same time the large value of S(k‖, z, z) at small k‖ indicates the
presence of a strong clustering tendency.
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We can get a physical picture of this. Consider a surface wave on a planar surface. A large
amplitude wave is perhaps not very frequent, but when it takes place a particle on the top of
the wave is surrounded by other particles because the local density is high even if the average
density is small. This is true even at T = 0 K where a real ripplon excitation is replaced by
its zero point motion. We can easily see this effect just by analysing the configurations along
the Monte Carlo run as in figure 1. We conclude that in a self-bound system the presence of
a region of very low density is not so much due to single particle penetrations of a potential
barrier (that due to the self-consistent field due to the other atoms) but to a collective effect. We
can substantiate this picture by comparing our S(k‖, z, z′) with the one (equation (8)) given by
the ripplon theory. In order to distinguish the collective contribution to S(k‖, z, z′) we take the
difference between the S(k‖, z, z′) computed with the glue-SWF and the same static structure
factor computed with the standard variational approach. This difference turns out to be in
quantitative agreement (see figure 7) with the ripplon contribution obtained from the formula
(8) in which we use for σ and ρ (z) the values given by the glue-SWF.

z [A]

z’ [A]

(a)

0 5 10 15 0
5

10
15

-0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

z [A]

z’ [A]

(b)

0 5 10 15 0
5
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15

-0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

Figure 7. (a) Difference between the two S(k‖, z, z′) computed from the glue-SWF and from the
standard variational wf as function of z and z′ (only z, z′ > 0 are shown). (b) S(k‖, z, z′) from
equation (8). In (a) and in (b) k‖ � 0.37 Å−1 (this is the smallest k‖ allowed by our simulation
cell).

We conclude that the glue-SWF contains the basic phenomenon of ripplon fluctuations
whereas the standard wf does not. Notice that in our computation there is a lower cut-off to k‖
due to the finite size of the system, so that we cannot describe the k

−1/2
‖ singularity but only

the enhancement of the density fluctuations at small but finite k‖. In addition, to recover the
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k
−1/2
‖ singularity the pseudopotentials should have a suitable long range contribution which is

absent in the present parametrization of the glue-SWF.
In order to study the size dependence of S(k‖, z, z) we have performed some computation

for a larger number of particles as well as with an increased area A of the slab. For a given
k‖ we find that this size dependence is small, below the noise level of the simulation. On the
other hand with a larger value of A one has access to smaller values of k‖ and we find that
S(k‖, z, z) given by the glue-SWF continues to increase as k‖ becomes smaller, as one would
expect on the basis of equation (8).

5. Bose–Einstein condensation and momentum distribution

In a slab geometry also the momentum distribution for �k parallel to the surface has a well
defined meaning and one can consider a z-dependent momentum distribution n(k‖, z). Of
special interest is the Bose–Einstein condensate fraction n0 (z), i.e. the fraction of particles
with k‖ = 0, as function of z. In order to study the local condensate fraction we have computed
the one-body density matrix [11] and analysed its off-diagonal long range order. The one-body
density matrix is given by

ρ1(�r, �r ′) = N

∫
d�r2 . . . d�rN�(�r, �r2, . . . , �rN)�(�r ′, �r2, . . . , �rN). (9)

In the slab geometry the one-body density matrix is a function of the z components of �r and �r ′

and of Rxy , the modulus of the projection of �r −�r ′ on the x–y plane: ρ1(�r, �r ′) = ρ1(Rxy, z, z
′)

where Rxy =
√
(x − x ′)2 + (y − y ′)2. As shown by Krotscheck [12], when Rxy goes to

infinity, the one-body density matrix converges to

lim
Rxy→∞

ρ1(Rxy, z, z
′) = [

ρ(z)ρ(z′)n0(z)n0(z
′)
] 1

2 (10)

where ρ(z) is again the density profile of the slab and n0(z) is the local condensate fraction
at height z. Therefore, from ρ1(Rxy, z, z) we can extract the condensate fraction by analysing
the long range limit

lim
Rxy→∞

ρ1(Rxy, z, z)

ρ(z)
= n0(z). (11)

We have computed ρ1 first with a standard wf and the results are shown in figure 8. Our
result agrees with previous results: a standard wf with one-body and bulk-like Jastrow terms
gives n0(z), which is a smoothly increasing function as one moves from the middle of the slab
to the tail region of the surface where the density becomes small. In the middle of the slab
(z ∼ 0 Å), where the density is near the equilibrium value, the local condensate is about 10%
(the value found in bulk 4He). Upon approaching the surface n0 increases; for instance it is
70% when ρ (z) is about 10% of ρeq and it reaches full condensation when ρ (z) is of order or
below 1% of ρeq .

A quite different result is found with the glue-SWF as it is shown in figure 9: in the
middle of the slab we find the usual bulk-value for the local condensate. Upon approaching
the interfacial region first n0 (z) rapidly rises up to about 50% when ρ (z) is about 10% of ρeq ,
but further out in the tail region n0 (z) decreases to small values. Actually in this region we are
able to give only an upper bound for the condensate fraction because the long range limit of
ρ1(Rxy, z, z) is not reached within the maximum distance allowed by the simulation box (see
figure 9). In figure 10 we shown0, as obtained by the long range limit ofρ1(Rxy, z, z), computed
with the standard wf and with the glue-SWF, and plotted as function of the local density of the
slab. By comparingρ1 withS(k‖, z, z)we find that the depletion of the condensate in the surface
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Figure 8. ρ1(Rxy, z, z)/ρ(z) as computed with a standard wf with one-body and bulk-like Jastrow
terms for three different distances from the surface where the density assumes the values in the
legend.
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Figure 9. ρ1(Rxy, z, z)/ρ(z) as computed with a glue-SWF for three different distances from the
surface where the density assumes the values in the legend.

region starts to take place where the ripplon enhancement of S(k‖, z, z) is maximum. This
result indicates that ripplon fluctuations have a strong depletion effect on the local condensate
fraction at the free surface. The quantum state that one obtains by displacing a particle in the
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Figure 10. n0 as function of the value of the local density of the slab for a standard wf (filled
circles) and for the glue-SWF (open symbols). In the low density region diamonds represent only
an upper bound for the condensate fraction because the long range limit of ρ1(Rxy, z, z) is not
reached within the maximum distance allowed by the simulation box.

surface region to a large distance parallel to the surface has still a finite overlap with the original
quantum state, but due to the presence of the zero-point motion of ripplons, this overlap is
strongly depressed even if the local density is very small and the system would appear as weakly
interacting. We find also that in correspondence of the depletion of the condensate in the tail
region of the surface there is an associated promotion of particles at small momenta. We see
this effect by computing a z-dependent momentum distribution n(k‖, z), i.e. the momentum
distribution for �k parallel to the surface. This function is related to ρ1(Rxy, z, z) simply via a
two dimensional Fourier transform. In figure 11 we show the results for the computation of
n(k‖, z). The three curves correspond to the same regions of the slab for which we have shown
the static structure factor in figure 6.

An interesting problem is how the momentum distribution depends on the size of the
system. We have not been able to study this because the computation of the one-body density
matrix is very heavy and presently we are not able to increase in an appreciable way the number
of particles. The present results have been obtained for a slab with N = 162 4He atoms and a
surface area of A = 290.6 Å2.

The interpretation of the SWF results is rather direct in terms of two competing effects on
the local condensate. The decreasing value of the local density as the surface is approached
causes an enhancement of n0(z) because the system is less strongly interacting. This effect is
contrasted by ripplon effects. As discussed above, when the local density becomes rather small
this small value of ρ(z) is due more to the presence of ridges and valleys due to the zero point
motion of ripplons than to single particle penetration of a barrier. This means that when we
destroy a particle at the x–y plane this particle comes most likely from a locally dense region,
from the ridge of a wave (figure 12). As we transfer this particle at some distance Rxy by
keeping the same value of z this particle will be floating on the average at some distance from
a valley of the wave but for such configuration the wf will be small due to the glue term. This



Fluctuation effects at the free surface of superfluid 4He 6021

0.01 0.10 1.00 10.00
k [A

−1
]

10
−7

10
−6

10
−5

10
−4

10
−3

n(
k,

z)

ρ(z) = 0.0207 A
−3

ρ(z) = 0.0099 A
−3

ρ(z) = 0.00033 A
−3

Figure 11. Momentum distribution n(k‖, z) for wave vector �k parallel to the surface as obtained
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Figure 12. Representation of the process in which a particle is destroyed in position A and it is
transferred a distance Rxy apart.

means that ρ1(Rxy, z, z) will be depressed for large Rxy so that also n0(z) decreases. No such
effect is present with the standard wf because the only z-dependent terms are the one-body
ones.

It is also interesting to look at the behaviour of n(k‖, z). On going from the middle of the
slab to the surface region where there is an enhancement of particles in the zero-momentum
state one finds a depression of n(k‖, z) at all finite k‖. This trend is reversed further out in the
surface where the zero-point motion of ripplons induces a depletion of the condensate fraction:
due to small k‖ fluctuations there is a large promotion of particles at small momentum. We
have studied the local condensate also in the case of clusters and we find rather similar results.



6022 D E Galli and L Reatto

6. Conclusion

We conclude that the zero point motion of ripplon fluctuations has a strong effect on some of the
ground state properties of the free surface of liquid 4He. These effects are manifested especially
in the local condensate fraction and in the local momentum distribution. Unfortunately, these
quantities are not easily measurable experimentally. The other quantity which is strongly
affected by ripplons is the static structure factor S(k‖, z, z) in the surface region, for which we
predict a well-defined signature of fluctuations: a large value of S(k‖, z, z) at small k‖ and the
persistence of short range correlations even when the local density is very small. Measurement
of S(k‖, z, z) should be feasible by performing diffraction measurements under total reflection
conditions. All these results indicate that the tail region of the liquid–vacuum interface is very
different from a rarefied system.
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